The tree property at $\aleph_{\omega+2}$ with a finite gap

Šárka Stejskalová

Department of Logic Charles University logika.ff.cuni.cz/sarka

Hejnice January 31, 2017

(1) With large cardinals, it is consistent to have GCH failing at \aleph_{ω} . (Gitik)

¹A tree of height $\aleph_{\omega+1}$ with levels of size at most \aleph_{ω} .

- With large cardinals, it is consistent to have GCH failing at κ_ω. (Gitik)
- ② With large cardinals, every ℵ_{ω+1}-tree¹ can have a cofinal branch. (Magidor and Shelah)

¹A tree of height $\aleph_{\omega+1}$ with levels of size at most \aleph_{ω} .

- With large cardinals, it is consistent to have GCH failing at κ_ω. (Gitik)
- ② With large cardinals, every ℵ_{ω+1}-tree¹ can have a cofinal branch. (Magidor and Shelah)
- 3 With large cardinals, every ℵ_{ω+2}-tree can have a cofinal branch. (Friedman and Halilovic)

¹A tree of height $\aleph_{\omega+1}$ with levels of size at most \aleph_{ω} .

- With large cardinals, it is consistent to have GCH failing at κ_ω. (Gitik)
- ② With large cardinals, every ℵ_{ω+1}-tree¹ can have a cofinal branch. (Magidor and Shelah)
- 3 With large cardinals, every ℵ_{ω+2}-tree can have a cofinal branch. (Friedman and Halilovic)
- ④ With large cardinals, every ℵ_n-tree can have a cofinal branch for all 1 < n < ω. (Cummings and Foreman)</p>

¹A tree of height $\aleph_{\omega+1}$ with levels of size at most \aleph_{ω} .

- **(1)** With large cardinals, it is consistent to have GCH failing at \aleph_{ω} . (Gitik)
- ② With large cardinals, every ℵ_{ω+1}-tree¹ can have a cofinal branch. (Magidor and Shelah)
- 3 With large cardinals, every ℵ_{ω+2}-tree can have a cofinal branch. (Friedman and Halilovic)
- ④ With large cardinals, every ℵ_n-tree can have a cofinal branch for all 1 < n < ω. (Cummings and Foreman)</p>
- Some combinations of these ... (such as 1+4, 2+4, 1+3) are consistent, some open (such as 2+3, 3+4, 1+2).

¹A tree of height $\aleph_{\omega+1}$ with levels of size at most \aleph_{ω} .

In this talk we will focus on the combination 1+3, i.e.

• Have $2^{\aleph_{\omega}}$ large + have the tree property at $\aleph_{\omega+2}$.

We will try to refine the known results by getting $2^{\aleph_{\omega}}$ as large as possible.

 We say that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ-tree has a cofinal branch.

- We say that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ-tree has a cofinal branch.
- (König) Every ω -tree has a cofinal branch.

- We say that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ-tree has a cofinal branch.
- (König) Every ω -tree has a cofinal branch.
- If κ is weakly compact, then TP(κ).

- We say that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ-tree has a cofinal branch.
- (König) Every ω -tree has a cofinal branch.
- If κ is weakly compact, then TP(κ).
- (Specker) If $\kappa^{<\kappa} = \kappa$ then there exists a κ^+ -Aronszajn tree. Therefore $\neg TP(\kappa^+)$.

- We say that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ-tree has a cofinal branch.
- (König) Every ω -tree has a cofinal branch.
- If κ is weakly compact, then TP(κ).
- (Specker) If $\kappa^{<\kappa} = \kappa$ then there exists a κ^+ -Aronszajn tree. Therefore $\neg TP(\kappa^+)$.

• If GCH then $\neg \mathsf{TP}(\kappa^{++})$ for all $\kappa \geq \omega$.

- We say that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ-tree has a cofinal branch.
- (König) Every ω -tree has a cofinal branch.
- If κ is weakly compact, then TP(κ).
- (Specker) If $\kappa^{<\kappa} = \kappa$ then there exists a κ^+ -Aronszajn tree. Therefore $\neg TP(\kappa^+)$.
 - If GCH then ¬TP(κ⁺⁺) for all κ ≥ ω.
 TP(κ⁺⁺) then 2^κ > κ⁺.

• A gap 2 was already proved by Friedman, Halilovic in 2011 using the Sacks forcing (starting with a weakly-compact hypermeasurable).

- A gap 2 was already proved by Friedman, Halilovic in 2011 using the Sacks forcing (starting with a weakly-compact hypermeasurable).
- Recently, gap 2 was also proved (by another method) by Cummings, Friedman, Magidor, Rinot, Sinapova (starting with a supercompact cardinal).

 The failure of GCH at ℵ_ω is equiconsistent with the existence of a measurable cardinal κ of Mitchell order κ⁺⁺. (Mitchell, Gitik)

- The failure of GCH at ℵ_ω is equiconsistent with the existence of a measurable cardinal κ of Mitchell order κ⁺⁺. (Mitchell, Gitik)
- It relatively easy to get a finite gap: $2^{\aleph_{\omega}} = \aleph_{\omega+n}$, $1 < n < \omega$.

- The failure of GCH at ℵ_ω is equiconsistent with the existence of a measurable cardinal κ of Mitchell order κ⁺⁺. (Mitchell, Gitik)
- It relatively easy to get a finite gap: $2^{\aleph_{\omega}} = \aleph_{\omega+n}$, $1 < n < \omega$.
- It is much harder to get an infinite gap: $2^{\aleph_{\omega}} = \aleph_{\omega+\omega+1}$ (Magidor), and $2^{\aleph_{\omega}} = \aleph_{\omega+\alpha+1}$ for any $\omega \le \alpha < \omega_1$ (Shelah).

- The failure of GCH at ℵ_ω is equiconsistent with the existence of a measurable cardinal κ of Mitchell order κ⁺⁺. (Mitchell, Gitik)
- It relatively easy to get a finite gap: $2^{\aleph_{\omega}} = \aleph_{\omega+n}$, $1 < n < \omega$.
- It is much harder to get an infinite gap: $2^{\aleph_{\omega}} = \aleph_{\omega+\omega+1}$ (Magidor), and $2^{\aleph_{\omega}} = \aleph_{\omega+\alpha+1}$ for any $\omega \le \alpha < \omega_1$ (Shelah).
- It is open whether 2^{ℵω} can be greater or equal to ℵ_{ω1} (pcf conjecture implies no).

We show a theorem for gap 3 (can be generalized to a finite gap):

Theorem (Friedman, Honzik, S. (2017))

Suppose there is κ which is $H(\lambda^+)$ -hypermeasurable where λ is the least weakly compact above κ . Then there is a forcing extension where the following hold:

1)
$$\kappa = \aleph_{\omega}$$
 is strong limit and $2^{\aleph_{\omega}} = \aleph_{\omega+3}$.

2 TP($\aleph_{\omega+2}$).

 We use a variant of the Mitchell forcing M = M(κ, λ, λ⁺) to force 2^κ is equal to λ⁺.

We use a variant of the Mitchell forcing M = M(κ, λ, λ⁺) to force 2^κ is equal to λ⁺.
(*) M is a projection of Add(κ, λ⁺) × Q, where Q is some κ⁺-closed forcing.

- We use a variant of the Mitchell forcing M = M(κ, λ, λ⁺) to force 2^κ is equal to λ⁺.
 (*) M is a projection of Add(κ, λ⁺) × Q, where Q is some κ⁺-closed forcing.
- We prepare the ground model so that \mathbb{M} preserves the measurability of κ (recall the previous talk).

- We use a variant of the Mitchell forcing M = M(κ, λ, λ⁺) to force 2^κ is equal to λ⁺.
 (*) M is a projection of Add(κ, λ⁺) × Q, where Q is some κ⁺-closed forcing.
- We prepare the ground model so that \mathbb{M} preserves the measurability of κ (recall the previous talk).
- In $V[\mathbb{M}]$, κ is still measurable witnessed by some measure U and one can construct a guiding generic G^g and define the Prikry forcing with collapses $\mathbb{P}(U, G^g)$.

- We use a variant of the Mitchell forcing M = M(κ, λ, λ⁺) to force 2^κ is equal to λ⁺.
 (*) M is a projection of Add(κ, λ⁺) × Q, where Q is some κ⁺-closed forcing.
- We prepare the ground model so that \mathbb{M} preserves the measurability of κ (recall the previous talk).
- In $V[\mathbb{M}]$, κ is still measurable witnessed by some measure U and one can construct a guiding generic G^g and define the Prikry forcing with collapses $\mathbb{P}(U, G^g)$.
- One can show that over V, $\mathbb{M} * \mathbb{P}(U, G^g)$ forces $\kappa = \aleph_{\omega}$, $\lambda = \aleph_{\omega+2}$, and $2^{\aleph_{\omega}} = \aleph_{\omega+3}$.

Following the approach of Abraham applied to M (see (*) above), we analyze M * P(U, G^g) using a certain product analysis (where r depends on the Cohen information of M):

Following the approach of Abraham applied to M (see (*) above), we analyze M * P(U, G^g) using a certain product analysis (where r depends on the Cohen information of M): C = {((p, ∅), r) | ((p, ∅), r) ∈ M * P(U, G^g)}. and

$$\mathbb{T} = \{(\emptyset, q) \,|\, (\emptyset, q) \in \mathbb{M}\}.$$

• The following hold:

Following the approach of Abraham applied to M (see (*) above), we analyze M * P(U, G^g) using a certain product analysis (where r depends on the Cohen information of M):
 C = {((p, ∅), r) | ((p, ∅), r) ∈ M * P(U, G^g)}.

$$\mathbb{T} = \{(\emptyset, q) \,|\, (\emptyset, q) \in \mathbb{M}\}.$$

- The following hold:
 - There is a projection from T × C onto a dense part of M ∗ P(U, G^g).

Following the approach of Abraham applied to M (see (*) above), we analyze M * P(U, G^g) using a certain product analysis (where r depends on the Cohen information of M):
 C = {((p, ∅), r) | ((p, ∅), r) ∈ M * P(U, G^g)}.
 and

$$\mathbb{T} = \{(\emptyset, q) \,|\, (\emptyset, q) \in \mathbb{M}\}.$$

- The following hold:
 - Intere is a projection from T × C onto a dense part of M ∗ P(U, G^g).
 - (2) \mathbb{T} is κ^+ -closed.

 One can define a restriction M * P(U, G^g)|α for suitable α's, α < λ, and carry out the product analysis of the tail forcing in the generic extension by M * P(U, G^g)|α.

- One can define a restriction M * P(U, G^g)|α for suitable α's, α < λ, and carry out the product analysis of the tail forcing in the generic extension by M * P(U, G^g)|α.
- Over the restriction, it is the key step to show that C² has the κ⁺-cc (to apply arguments related to not-adding branches to trees of height λ).

- One can define a restriction M * P(U, G^g)|α for suitable α's, α < λ, and carry out the product analysis of the tail forcing in the generic extension by M * P(U, G^g)|α.
- Over the restriction, it is the key step to show that C² has the κ⁺-cc (to apply arguments related to not-adding branches to trees of height λ).
- The argument finishes as follows: Suppose M * P(U, G^g) adds a λ-Aronszajn tree T. Using a chain condition argument, one can find λ < β < λ⁺, and a (modified) restriction M(κ, λ, β) * P(c(U), c(G^g)) which already adds the tree T.

- One can define a restriction M * P(U, G^g)|α for suitable α's, α < λ, and carry out the product analysis of the tail forcing in the generic extension by M * P(U, G^g)|α.
- Over the restriction, it is the key step to show that C² has the κ⁺-cc (to apply arguments related to not-adding branches to trees of height λ).
- The argument finishes as follows: Suppose M * P(U, G^g) adds a λ-Aronszajn tree T. Using a chain condition argument, one can find λ < β < λ⁺, and a (modified) restriction M(κ, λ, β) * P(c(U), c(G^g)) which already adds the tree T.
- The last assumption is used to obtain a contradiction using properties such as the κ⁺-cc of C² and the product analysis C × T over a suitable quotient.

1 Is it consistent to have an infinite gap with $TP(\aleph_{\omega+2})$?

- **1** Is it consistent to have an infinite gap with $TP(\aleph_{\omega+2})$?
- ② Is it consistent to have $TP(\aleph_{\omega+2})$ and GCH below \aleph_{ω} ?

- **1** Is it consistent to have an infinite gap with $TP(\aleph_{\omega+2})$?
- ② Is it consistent to have $TP(\aleph_{\omega+2})$ and GCH below \aleph_{ω} ?
- 3 Is it consistent to have $TP(\aleph_{\omega_1+2})$ with gap 2? (Golshani announced to be close to proving this is consistent).

- **(1)** Is it consistent to have an infinite gap with $TP(\aleph_{\omega+2})$?
- ② Is it consistent to have $TP(\aleph_{\omega+2})$ and GCH below \aleph_{ω} ?
- ③ Is it consistent to have TP(ℵ_{ω1+2}) with gap 2? (Golshani announced to be close to proving this is consistent).
- **4** Is it consistent to have $TP(\aleph_{\omega_1+2})$ with a larger gap than 2?